In our recent THALES HFXL monitorings we noted an initial "leader" burst which is exchanged in each frequency of the channel between the peers, the exchanges occurs after the 2G-ALE phase and just before the traffic starts: in our guess it appears to be the "wide band link", i.e. the third step of the HFXL link establishment procedure.
The used waveform is the same of HFXL-S4539: you may note the presence of the Thales "extented" preamble in Fig. 1
Fig. 1 . the presence of the THALES extened preamble following the S4539 normal preamble |
It's interesting to note that after removing the mini-probes, the data blocks symbols show a regular structure of 768 bits (!), i.e. the 256 tribit data symbols of the S4539 framing appear as composed of repeated sequences/data; indeed, such a perfect 768-bit period does not occur in cases where user data such as chat, HTML, FTP, emails,... are sent. The presence of such repetitions is also clearly visible at a glance in the bistream (Fig. 2).
Fig. 2 |
Another clue in favor of repeated sequences in the data blocks is the ease with which the autocorrelation of 27648 bits is detected (Fig. 3): that's the length of the inteleaver block and just thanks to repeated data that it's possible to mark it. Also, the strong result of the autocorrelation leads to think of the use of Walsh Orthogonal Modulation, although it's not provided in S4539. Indeed, the detection of the interleaver length is facilitated because the last di-bit in any interleaver block is identified by the use of alternate set of Walsh sequences.
Fig. 3 - result from the autocorrelation |
AngazU edited a header to eliminate the miniprobes (roughly) and the resulting ACF is 26.6 ms considering both polarities and 13.3 ms considering only one. This indicates that it could be a walsh code of 32 symbols that is repeated inverted (Fig.4): 64 (32+32) symbols lasting ~26.6ms makes a data rate of 2400 Baud.
But be careful, it's just a speculation! We'll need a good quality recording to demodulate it and to verify it at bit level.
From the above, we think that the initial bursts use Walsh modulation and are used as a negotiation phase before the traffic starts: possibly we are facing with the "wide band link" (Fig. 4) that makes use of the "Cognitive Engine" software during the link establishment procedure, taking into account information on MUF, requested SNR, noise level, propagation modes, antenna performances.
But be careful, it's just a speculation! We'll need a good quality recording to demodulate it and to verify it at bit level.
Fig. 4 |
From the above, we think that the initial bursts use Walsh modulation and are used as a negotiation phase before the traffic starts: possibly we are facing with the "wide band link" (Fig. 4) that makes use of the "Cognitive Engine" software during the link establishment procedure, taking into account information on MUF, requested SNR, noise level, propagation modes, antenna performances.
As said, the above are only our hypotheses, we do not yet have any confirmation of them. Comments are welcome.
Fig. 4 - HFXL link establishment procedure |
No comments:
Post a Comment