This is a very interesting STANAG-4285 signal spotted on May 24 on 6378.0 KHz USB thanks to the KiwiSDR owned by VK6QS in Collie, Western Australia. About the 6378 KHz, some old WUN logs report the callsign VZD800, at that time attribuited to the Royal Australian Navy (RAN). On my side, on that same frequency I spotted the Australian MHFCS net operating in ISB/FSK: so, as also confirmed by the direction finding, the source is definitely in Australia.
In my opinion, I believe this is a KW-46 (or KIV-7M) secured multichannel fleet broadcast originated by the GA-205 TDM [1]: a 12-channel time division multiplexer that was just deployed at RAN by DRS Technologies (Fig. 1).
In my opinion, I believe this is a KW-46 (or KIV-7M) secured multichannel fleet broadcast originated by the GA-205 TDM [1]: a 12-channel time division multiplexer that was just deployed at RAN by DRS Technologies (Fig. 1).
Now, the way I came up to this conclusion.
The HF waveform is STANAG-4285, here used in the usual "600bps/Long" sub-mode (Fig. 1): waveform that is easily recognizable and then demodulable by almost all software decoders. Given the evidence of regular patterns, I reshaped the demodulated stream to a 12-bit format, just as the number of the input ports of the GA-205 TDM. After reshaping, you can clearly see that the 12 input channels transport exactly the same data (Fig. 2).
Fig.2 |
Then I exctracted a single payload (i.e. a column of the stream), reshaped it to a 7-bit frames format and tested it for LFSR delimitation: as expected, the KW-46 "sign" was detected (Fig. 3). Indeed, as from STANAG-5065, the "Fibonacci bits" originated by the polynomial x^31+x^3+1 are used by KW-46 cryptographic equipment to provide synchronization.
Fig.3 |
In synchronous mode the TDM works by the muliplexer giving exactly the same time slot to each device connected to it even if one or more devices have nothing to transmit. The data rates of different input devices control the number of the slots: a device may have one slot, other may have two or three according to their data rate. In this case, all the input channels have the same data rate of 600:12=50 Baud, therefore share the same number of slots. Managing a TDM requires that some control bits (sync, device tagging, ...) be appended to the beginning of each slot, but I did not find such bits in the streams I demodulated: a recording of the initial part of a similar transmission could help.
From what above, in my opinion the heard S4285 transmission is a fleet broadcast consisting of 12 "flat multiplexed" [2] channels that transport the same KW-46/KIV-7M secured payload (real traffic or pseudo-random chars).
Monitoring the 6378.0 KHz frequency, on May 25 I saw that they switched to the ISB mode (Fig. 4), more precisely: LSB for a single channel fleet broadcast and USB for a multi channel (GA-205 TDM) fleet broadcast; both the broadcasts are KW-46 secured and use the same STANAG-4285 600bps/L waveform. Don't know if they carry the same payloads.
The same STANAG-4285 configuration and broadcast paradigm were also spotted on 7462, 8460.2, 9140, 10368, 10407, and 10847.2 KHz (logged on May, 28): surely there are many other operating frequencies that I do not currently know.
From what above, in my opinion the heard S4285 transmission is a fleet broadcast consisting of 12 "flat multiplexed" [2] channels that transport the same KW-46/KIV-7M secured payload (real traffic or pseudo-random chars).
Monitoring the 6378.0 KHz frequency, on May 25 I saw that they switched to the ISB mode (Fig. 4), more precisely: LSB for a single channel fleet broadcast and USB for a multi channel (GA-205 TDM) fleet broadcast; both the broadcasts are KW-46 secured and use the same STANAG-4285 600bps/L waveform. Don't know if they carry the same payloads.
The same STANAG-4285 configuration and broadcast paradigm were also spotted on 7462, 8460.2, 9140, 10368, 10407, and 10847.2 KHz (logged on May, 28): surely there are many other operating frequencies that I do not currently know.
For what concerns the source of the signal, TDoA direction findings indicate the "Naval Communication Station Harold E. Holt" (NCS HEH) which is located 6km north of Exmouth (Fig. 5). COMMSTA HEH is jointly manned by Royal Australian Navy and US Navy Personnel. The High Frequency Transmitter (HFT) site building houses a number of transmitters, many of which are dedicated to point to point communication circuits. These circuits are established with shore facilities and navy surface ships operating within the station's area of communications responsibility.
My friend Eddy Waters (member of Utility DXers Forum) from Australia emailed me: "there seem to be transmitter site changes happen at different times of the day. Sometimes these signals come from Exmouth Western Australia, sometimes from Lyndoch, New South Wales, sometimes from Humpty Doo, Northern Territory. There are more and more frequencies changing over to the ISB STANAG setup that you describe".
As far as I know, RAN fleet broadcasts come in using the GA-205 in a 6-channels configuration, it's not clear to me the use of 12-channels that - moreover- transport the same payload. I tried to reshape the stream to a 6-bit frames format (and 6-bit multiples)... but the KW-46 synch missed. By the way, it's interesting to mention the KW-46 secured transmissions (probably also them from RAN) reported here: https://i56578-swl.blogspot.com/.../kw-46-secured-traffic-over-188-110a.html
My friend Eddy Waters (member of Utility DXers Forum) from Australia emailed me: "there seem to be transmitter site changes happen at different times of the day. Sometimes these signals come from Exmouth Western Australia, sometimes from Lyndoch, New South Wales, sometimes from Humpty Doo, Northern Territory. There are more and more frequencies changing over to the ISB STANAG setup that you describe".
Fig. 5 |
As far as I know, RAN fleet broadcasts come in using the GA-205 in a 6-channels configuration, it's not clear to me the use of 12-channels that - moreover- transport the same payload. I tried to reshape the stream to a 6-bit frames format (and 6-bit multiples)... but the KW-46 synch missed. By the way, it's interesting to mention the KW-46 secured transmissions (probably also them from RAN) reported here: https://i56578-swl.blogspot.com/.../kw-46-secured-traffic-over-188-110a.html
[1] https://www.yumpu.com/.../ga-205-time-division-multiplexer
[2] I used the term "flat multiplexed" to mean the fact that no classified multiplexing algorithm seems to be used.
[2] I used the term "flat multiplexed" to mean the fact that no classified multiplexing algorithm seems to be used.
https://yadi.sk/d/xAuyLscfTDVCAQ (USB signal)
https://yadi.sk/d/icaUluG2MVpcNw (LSB signal)
https://yadi.sk/d/ppWjnYGFfsPw4A (USB stream)
https://yadi.sk/d/Fj3qaB5_Mndc3g (LSB stream)
https://yadi.sk/d/icaUluG2MVpcNw (LSB signal)
https://yadi.sk/d/ppWjnYGFfsPw4A (USB stream)
https://yadi.sk/d/Fj3qaB5_Mndc3g (LSB stream)
No comments:
Post a Comment