18 November 2014

CIS FSK 200/1000


FSK 200/1000 is a technical name for a digital mode used by Russian Intelligence and possibly also Diplomatic stations. The name stands for its baud rate and shift - 200 bd speed, 1000 Hz shift between tones.

Aggiungi didascalia

The messages are encrypted bitstreams, sent in 288-bit blocks. Each block begins with control bytes 0x7D 0x12 0xB0 0xE6. The first two blocks of each message are significant, containing information on the amount of blocks, communication link ID, day of the month, serial number, message type, possibly the amount of encoded groups, and encoded decryption information.
A short recording may be heard  here

Below is an example of a FSK 200/1000 decoded transmission: you can see the mentioned keys (link ID, day of the month,...): reception was made on 17 November at 2020z, on 8123.0 KHz/USB:

----------------------------------------------------------
Block No 0 : Total Message Size 4 blocks : This transmission contains one message.
7d,12,b0,e6,00,00,00,00,00,00,60,00,10,00,00,00,00,08,20,04,00,04,00,08,40,0b,40,06,70,03,70,0e,20,0f,90,08
Block No 1  : Link ID 28680  : 17th of month  : Msg Number 002 : Msg Type 07145 : Group Count (?) 4
22796 00000 00000 00606 56197 35395 00893 60555
7d,12,b0,e6,00,33,15,00,b9,40,e0,e0,9c,10,7a,00,0a,02,00,05,82,0e,d8,0e,ba,3c,84,78,53,db,06,12,25,10,89,03
Block No 2
7d,12,b0,e6,00,55,00,00,00,00,00,00,00,00,00,00,00,0a,00,0f,00,0a,00,09,00,01,00,00,00,03,00,04,00,05,00,04
----------------------------------------------------------
Block No 0 : Total Message Size 4 blocks : This transmission contains one message.
7d,12,b0,e6,00,00,00,00,00,00,60,00,10,00,00,00,00,08,20,04,00,04,00,08,40,0b,40,06,70,03,70,0e,20,0f,90,08
Block No 1  : Link ID 28680  : 17th of month  : Msg Number 002 : Msg Type 07145 : Group Count (?) 4
22796 00000 00000 00606 56197 35395 00893 60555
7d,12,b0,e6,00,33,15,00,b9,40,e0,e0,9c,10,7a,00,0a,02,00,05,82,0e,d8,0e,ba,3c,84,78,53,db,06,12,25,10,89,03
Block No 2
7d,12,b0,e6,00,55,00,00,00,00,00,00,00,00,00,00,00,0a,00,0f,00,0a,00,09,00,01,00,00,00,03,00,04,00,05,00,04
----------------------------------------------------------
Block No 0 : Total Message Size 2 blocks : This transmission contains 0 messages.
7d,12,b0,e6,00,00,00,00,00,00,30,00,08,00,00,00,00,04,10,02,00,02,00,04,20,05,a0,03,38,01,b8,07,10,07,c8,04
Block No 1  : Link ID 28680  : 17th of month  : Msg Number 002 : Msg Type 07145 : Group Count (?) 4
22796 00000 00000 00606 56197 35395 00893 60555
7d,12,b0,e6,00,33,15,00,b9,40,e0,e0,9c,10,7a,00,0a,02,00,05,82,0e,d8,0e,ba,3c,84,78,53,db,06,12,25,10,89,03
Block No 2
7d,12,b0,e6,00,55,00,00,00,00,00,00,00,00,00,00,00,0a,00,0f,00,0a,00,09,00,01,00,00,00,03,00,04,00,05,00,04
----------------------------------------------------------

FSK 200/1000 also has a concept of empty messages. These are always 4 blocks long, and include "00000" groups.
FSK 200/1000 operates in schedules of three transmissions, spaced 10 minutes apart.
The further transmissions are transmitted on lower frequencies. The frequency usage indicates worldwide operation. There also are unscheduled transmissions, using the communication link ID "00000", which may not repeat in regular manner.

FSK 200/1000 contents can be decoded using the free program Rivet, as in the following screenshot:

17 November 2014

XSL - the "Japanese Slot Machine"

Japanese Slot Machine (also named XSL or JSM) is a system thought to be from the Japanese Government or Self-Defense Force (Navy). Some have likened its weird sound to that of a Las Vegas slot machine, so the name Japanese Slot Machine.
I heard an XSL transmission on 16 November (at 2212z) on 8588.0 KHz/USB: see below a screenshot from my SDR Console during the reception.


Known Frequencies
4231.5 kHz     6417.0 kHz     8588.0 kHz        
4291.0 kHz     6445.1 kHz     8704.0 kHz


The signal transmits continuously on pairs of frequencies in the 4MHz, 6MHz and 8MHz bands, which places it firmly in the ITU bands allocated for Maritime use.
Reports show the signal to be stongest in the Far East, indicating an origin in that part of the World. Although the signals are weak in Europe, they can be monitored in the evenings on both the 6MHz and 8MHz frequncies. The poor reception makes analysis of the signal difficult.
An article in Monitoring Times, December 2002 was the first to identify these signals as Japanese Navy. Writing it the "Utility World" column, Hugh Stegman outlines his reasons for this claim. Firstly, direction-finding fixes indicated Japan at the source of the signals, although China and Russia were not ruled out.
Secondly, the frequencies correlate with those previously used by the Japanese Navy for eight-tone radio modems, some of which disappeared at the right time.
Finally, monitors travelling to Japan identified additional strong local frequencies, some of which were only operating on a part daily basis.

The mode being used is quadrature phase-shift keying (QPSK) , encrypted shore to ships traffic.  The mode is un-decodable: Sigmira doesn't really decode the information but only displays the "frames" and raw QPSK symbols.


It still remains a challenging and difficult signal to monitor at any reasonable strength in Europe.

The following is quoted from the Sigmira manual.
"With some investigation the symbol rate was determined to be 1600.00 baud. The regular ticking sound was found to be an exactly repeating sequence of symbols. Clearly that serves as a channel probe and frame synchronization pattern. 
One tick sound period is here defined as a "frame". Frames were found to consist of 140 QPSK symbols. So the frame rate is 11.42857 Hz. 
The probe/sync pattern is 28 symbols which is one fifth the number of symbols per frame. It is found that, during the repetitive melody idle time, the remaining symbols of a frame consist of four repetitions of another 28 symbol pattern. So a frame appears to consist of five "blocks" of 28 symbols. 

During idle time there is a finite set of symbol patterns that appear in the blocks. The patterns are designated here: ps, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, and p11. The "ps" pattern is the probe/sync pattern. The rest are numbered roughly in the order of their frequency of occurrence. The "p0" pattern is most common. The melodic idle time consists of an exactly repeating sequence of 64 frames. A 64 frame sequence is called a "super frame" here. 

The duration of a super frame is 5.60000 seconds. The frame / block pattern of the idle super frame is presented in the following table. The melody arises from the regular repeated simple patterns of symbols/phases. The p10 pattern is all one phase. So it produces a single tone. The p11 pattern is also all one phase but 180 degrees from p10. The other patterns are somewhat more complex and result in different and multiple apparent tones."
 
A short recording of my XSL reception may be heard here
decoder Sigmira may be downloaded from the sigmira official site 




16 November 2014

XSQ - Guangzhou Coast Station


Guangzhou Coast Station is one of the China's largest coast station in southern China and was established in October 14, 1949.
Guangzhou coast station is directly under the Guangdong Maritime Safety Agency. The staff is 176 of employees people: 122 people in the post, four senior titles, intermediate title 12 people, technical staff of 76 people.

Main functions:

1, implementation of the party and state policies and directives and superior decisions;

2, responsible for the South China Sea maritime safety information broadcast, distress and safety duty and other services, to provide security communications for ships at sea;

3, provide maritime radio communication services and special communications tasks assigned by superiors for international and domestic shipping;

4, provide ship-shore communication technology and social counseling services, ship guided escrow and other public services;

5, take charge of the Guangdong Maritime Safety Administration water traffic safety supervision communications, information systems, communication lines, communication networks and other construction and maintenance;

6, in accordance with the authorization, responsible for issuing work within the jurisdiction of the ship station licens

From January 1, 2014, Guangzhou coast stations offer free boat ship - shore public (official) communications services.

 radio station long line facilities and equipment

Guangzhou coast station is a three-site formula coast station:

Wanqingsha: receiving station
Nangang: center console (located in Huangpu, Guangzhou Development Zone)
Luogang: transmitting station(Eastern Guangzhou City, covering about 35 thousand square meters)

and other nine minor base stations.


eMail: gzrdo@gzrdo.com
Address: Room 1101, No. 40, Guangzhou Bin Jiangxi
Radio Telephone: 020-83295815 Office Tel: 020-83295554 

Guangdong Coast VHF system server, automatic DSC, AIS terminal


6 November 2014

Swiss 2 x 100Bd/170Hz VFT system

fig 1

VFT 2 x FSK 100Bd/170Hz system used by Swiss Air Force, likely the modem is the "Telematik-Set TmS-430". Channels are simply arranged as in fig. 1.

fig. 2
fig. 3
fig. 4

3 November 2014

why HF ?


in the age of Internet and Satcom why they should still use HF?

Prior to the launch of communications satellites in the 1960s, high frequency (HF) radio was the principal means to communicate over the horizon. Satellite links permitted users to communicate at higher data rates, and over time HF was relegated to a backup role within the militaries of the United States, Western Europe, and the former Soviet Union. However, the limitations of satellites became clear in the Cold War era, as satellites were not only vulnerable to jamming and physical damage, but also required a supporting infrastructure that was expensive to build and maintain. The last two decades have resultantly seen resurgence in HF radio, led by a new generation of automated equipment with improved link reliability, connectivity, and speed that offered many of the benefits of satellite technology at a fraction of the overall cost. HF now serves as the principal backup in most ground- and ship-based configurations, and the primary backup in installations prioritizing lowest total cost of ownership.

Today, amidst the post 9/11 requirements for continuity of operations and a failsafe means of voice and data communication, HF equipment serves as a critical component in most emergency preparedness wireless communications plans. HF radio provides an additional layer of protection against total loss of communication when infrastructure-dependent communications are disabled, destroyed, or unavailable.

Benefits of HF Technology:

MINIMAL INFRASTRUCTURE REQUIREMENTS
An HF radio network requires absolutely no infrastructure. Unlike conventional land lines, cellular and satellite telephones, and Voice Over IP, an HF radio user can communicate with another HF radio user without any infrastructure apart from the equipment and housing area, minimizing both cost and susceptibility to damage.
   
MINIMAL COST OF OWNERSHIP
HF is the most economical means of failsafe communication. After the initial investment in equipment and installation is made, there are no call or line costs. Furthermore, such equipment is ruggedized and built to withstand extreme conditions over many years, thereby significantly reducing costs of the usage period.

TRUE HEMISPHERIC COVERAGE
HF, or short-wave, radio is the best suited technology to communicate over long distances. When coupled with solid-state kilowatt amplifiers, HF can serve as a primary or emergency means of communication to and from any point in the world.

SURE AND SECURE COMMUNICATIONS
For sensitive communications where security is essential, voice and data encryption is a readily available option with HF radio with differing levels of security based on the respective communications requirement.

FULL FEATURED
In addition to voice, HF radios come with options that allow for telephone, fax, email, and high speed data.

INTEROPERABILITY
HF radios can communicate with existing VHF and UHF systems, cellular telephones and land lines through developments in cross-patching technology.



[ source sunair ]