15 April 2021

a long (and protected) FLSU async scanning call

STANAG-4538 async call of FLSU protocol consists of the transmission of 1.35N (nearest integer value) Request type 3 PDUs on the requested link frequency, where N is the number of channels in the scan list, and 1.35 is the duration of each dwell period in seconds; the "scanning call" ends with a single FLSU request PDU of type 0 (Fig. 1). Since up to 61 requests are used, 45 are the allocated channels for this network.

000 10 1000100000 1010100110 0 0 011 101100 011111 11011111
001 00 1101010101 0010000011 0 1 110 001100 010111 01011010
000 10 1000100000 1010100110 0 0 011 101100 011111 11011111
001 00 1101010101 0010000011 0 1 110 001100 010111 01011010
000 10 1000100000 1010100110 0 0 011 101100 011111 11011111
001 00 1101010101 0010000011 0 1 110 001100 010111 01011010
000 10 1000100000 1010100110 0 0 011 101100 011111 11011111
...
...
001 10 1000100101 0111010110 0 0 011 011111 000101 00110111

 

Fig. 1 - LFSU async call

One might be wondering why the 61 requests have different formats: the answer is that the calling station uses the Linking Protection (LP) procedure. 3G-ALE LP scrambles the 50-bit PDUs using a scrambling algorithm that depends on a key variable, the time of transmission of the PDU, and the frequency on which it is sent (the latter two dependencies enter via a seed that is distinct from the key variable). The 50-bit PDUs are scrambled using alternating the two "Word Numbers" (provided by the seed) 00000000 and 00000001 while the PDU of type 0 that concludes the asynchronous call is scrambled using the "Word Number" 00000010: thus that the same PDU is scrambled 61 times (in this sample) using two alternating keys, that's the reason of the alternating patterns seen above. The effect of this alternating scrambling is also reproduced in the ACF function of figure 2.

Fig. 2 - Auto Correlation Function of the async call

The scrambling  procedure use the SoDark-6 algorithm (48-bit length) and then only the last rightmost 48 bits of each FLSU PDU are scrambled so the first leftmost two bits are sent without scrambling. 

Note that LP does not address jamming or similar techniques, which are best countered by TRANSEC, nor is it intended to replace the COMSEC function of traffic protection. LP protects the linking function, including related addressing and control information.

https://disk.yandex.com/d/YM8rWZvP4heOoA (wav)
https://disk.yandex.com/d/wNR0-nLOl7i87g (bitstream)


No comments:

Post a Comment